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A general method for the structural transformation of dynamical systems containing gyroscopic forces is considered. The method 
simplifies the investigation without changing the qualitative properties of the initial system. Examples are considered. © 1998 
Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M .  
THE INITIAL MATRIX EQUATION 

The method of averaging is one of the effective methods for the approximate investigation of problems 
of non-linear mechanics (in particular, mathematical models of various vibration processes. Bogolyubov 
showed that it can be applied to a special (standard) form of differential equations [1-4] 

dx/dt = laX(t, x, It), x(0) = x0 (1.1) 

Here x -- colon (Xl,. • . ,  xn), X --- colon (X1 . . . . .  Xn) are certain n-dimensional column vectors and ~t 
is a small non-negative parameter. Averaging is carried out on the right-hand side of Eq. (1.1). ~ 

Preliminary reduction to the standard form (1.1) is a necessary stage when using the method of 
averaging. Moreover, a similar state sometimes accompanies stabilities (instabilities) of the average 
system in the initial system also, when the latter does not necessarily have the standard form (1.1). 
However, there are no general theorems which justify the use of the method of averaging in such cases, 
and there is not always a formal replacement of some equations by others which can lead to the correct 
result [5]. This applies, in particular, to dynamical systems with gyroscopic forces. If the coefficients of 
the gyroscopic terms in the equations of perturbed motion are periodic in t, with a certain real period 
x, in the formal averaging over a period the gyroscopic terms may vanish, and consideration of these 
despite their periodicity, nevertheless leads to some stabilizing effect [6, 7]. 

When there are gyroscopic terms in the initial equations it is desirable to have available fundamental 
methods which would enable one, without changing the stability conditions and the stabilizing properties, 
inherent in gyroscopic structures, to change the initial equations so that the transformed equations do 
not contain gyroscc,pic terms at all. In this report it is worth noting Bulgakov's method of normal 
coordinates, which can be extended to systems with gyroscopic terms, and by means of which one can 
obtain equations which are easily reducible to the standard form (1.1) [8]. With certain reservations, 
Bulgakov's method can be extended to systems with slowly varying parameters [9], although, strictly 
speaking, it is only applicable to systems of differential equations with constant coefficients. 

We note also the :method of reducing gyroscopic systems to standard form proposed in [4] when the 
matrix of the gyroscopic forces is non-degenerate and constant. 

Below we conside, r, under more general assumptions, a method for the structural transformation of 
the initial equations, which leads to the elimination from them of the gyroscopic terms and also of the 
non-conservative positional terms. The object of the investigation is a matrix equation of the form 

a~c + D)c + H)c + Hx + Px = F(t) + X(x, )c) (1.2) 

wherex is an n-dimensional vector, a 0 is a certain positive scalar parameter, D and H are n x n symmetric 
matrices, H and P are skew-symmetric matrices of the same dimensions, F(t)  is an n-dimensional vector 
of the perturbing forces and X(x,  Yc) is a vector function containing x and ~t in powers higher than the 
first. The constancy of the matrices D, H, H and P is not obligatory: their elements can be real, continuous 
and bounded functions of t. Equation (1.2) describes the motion of many mass systems, acted upon by 
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dissipative, gyroscopic, potential and non-conservative positional forces, and also specified perturbing 
forces. 

2. O R T H O G O N A L  T R A N S F O R M A T I O N  OF EQ. (1.2) 

In Eq. (1.2) we will change to a new variable ~ by means of the transformation 

= L x  (2.1) 

where the matrix L will be defined later. As a result, we obtain the equation 

ao~ + LDL-'~ + (LH - ao L)L-I~ + (LH - 2aoL)L -I (~ - LL-'~) + 

+ L(P- DL-IL)L-*~ = LF+ 

(2.2) 

in which the vector function ~ contains the quantities ~ and ~ in powers no lower than the second. 
Referring to Eq. (2.2), we note that the fourth term on the left-hand side in any case vanishes if the 

following condition is satisfied 

L = (2ao) -l LH (2.3) 

which, for a specified matrixH, can be regarded as a matrix equation in L. Taking into account the fact 
that H is skew-symmetric and satisfying, in the solutions of Eq. (2.3), the identity matrix E of the initial 
conditions, we obtain L in the form of an orthogonal matrix. In fact, if L is orthogonal, then by its 

T T definition we must have L L  = E,  where L is the transposed matrix of L. Differentiating this expression 
T 1 T T and taking into account the fact that (2.3) yields L = (2a0)- H L , we obtain the following expression 

which vanishes identically 

( 2 % )  -I ( L H L  T + L H T L  T) = 0 

since, by virtue of the fact that the matrix of the gyroscopic forces is skew-symmetric we have H = 
- H  r. Hence L L  r = C, where C is a certain constant matrix. Satisfying here the identity matrix of the 
initial conditions, we have L L  T = E,  which was required. Since I det L I = 1, when L( t )  and L(t) are 
bounded in the interval (to, oo), the matrix L will be the Lyapunov matrix. 

Taking condition (2.3) into account we can write the matrix equation (2.2) in the form 

ao~ + LDLr~ + {L(H + P -  DLrL)  - aoL}Lr~ = L F  + (2.4) 

If there are no dissipative, non-conservative forces and also no external perturbation, Eq. (2.4) can 
be written in the form 

5 + K~ = ~, K = ao1(LI - I -aoL)L  r (2.5) 

In the case of the symmetric matrix K, Eq. (2.5), apart from the right-hand side, corresponds to a 
linear Hamiltonian equation. 

Note that when 

2 a o L -  L l t  = O , DL-I L -  p = o (2.6) 

the last two terms on the left-hand side of Eq. (2.2) vanish and, hence, not only are the gyroscopic terms 
eliminated from it but also the non-conservative positional terms. However, conditions (2.6) are only 
satisfied simultaneously in the exceptional case when the matrices H, D and P, without being identically 
zero, are related by the equation 

2aoP - D H  = 0 (2.7) 
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3. THE L A G R A N G E  G Y R O S C O P E  ON A V I B R A T I N G  BASE 

The procedure described in Sections 1 and 2 can be applied to the problem of stabilizing a Lagrange 
gyroscope, assuming; it to be on a base undergoing a vertical harmonic vibration as given by ~ = 
a cospt,  where a andp are the amplitude and angular frequency of the vibrations, respectively. Ignoring 
the resistance of the :medium, the first approximation of the equations of the perturbed motion, obtained 
from the Euler-Pois.son system, has the following form for the case in question [10] 

~l 2 A - C  1 
""~- -  (~2 + {(C- A)O 2 - m ( g - a p  2 cospt)zc}TI = 0 

(3.1) 
2 A - C  1 

Y2 + A t°~'! + {(C-A)¢o 2 - m ( g - a p  2cospt)zc}Y2 = 0  

Here A, A and C are the principal moments of inertia of the gyroscope about the orthogonal axes Ox, 
Oy and Oz, connected with it, with origin at the fixed point O, m is the mass of the gyroscope, Y1 and 
3'2 are the direction cosines of the ascending vertical O~ with the Ox and Oy axes, and zc is the coordinate 
of the centre of gravity of the body about the Oz axis (we will henceforth assume zc = l > 0). Since the 
resistance to motion is ignored in the calculation, we can assume the angular velocity co of the gyroscope 
to be constant. The general algorithm, which leads, in the special case of Eqs (3.1), to the elimination 
of the gyroscopic terms from them, is described by matrix equation (2.3). Assuming L = [I l/k II 2 and also 

we arrive at the following equations in l/k 

2il, = hll2, 2il2 = -h i l l ,  2i21 = h122, 2/22 = -hi21 (3.3) 

Equations (3.3) can be rapidly integrated. By satisfying the identity matrix of the initial conditions 
with respect to L, we obtain 

L = ~cos f i t  - sin £~t~ h 2A - C 
IsinF~t cosO.t ~' • = 2" = 2 " - - ' ~  '°° (3.4) 

Apart from higher-order terms, Eq. (2.5) for the case considered can be represented in the form 

+ (cE - LL r)~ = 0, c = 1 {(C- A ) o  2 - m(g - ap 2 cos pt)l} 

where ~ = [~1, ~2] T is a two-dimensional vector, E, as before, is the identity matrix, and L is defined by 
(3.4). As a result, putting pt  = 2z - ~r, we obtain two scalar Mathieu equations of the same structure 

d2~k 
dz 2 + ( v - 2 q c o s 2 z ) ~ k  =0, k = l , 2  (3.5) 

2ma_.__~/ (3.6) v = (CZo) 2 - 4Amgl),  q = A 

We will further assume that the following condition is satisfied 

C2to 2 - 4Amgl  < 0 (3.7) 

which, when there m:e no vibrations, corresponds to instability in the motion of the Lagrange gyroscope 
[11, 12]. 



754 V.N. Koshlyakov 

We will show that, using the vertical vibration, we can stabilize the motion for this case. We will use 
for this purpose an Ince-Strutt diagram, as it applies to Eqs (3.5) [11, 13, 14]. 

Figure 1 shows part of this diagram, enclosing the region of negative values of v. For these values of 
v and small values of the parameter q, the part of the diagram shown hatched in the figure corresponds 
to the region of stability and is bounded by the parabola q2 = _ 2v and the straight line q = 1 - v. 
Stability (non-asymptotic) will be guaranteed if the point M(v, q) lies within the hatched part of the 
diagram. For v < 0 this will always occur if the point in question is situated above the parabola q2 = 
-2v and below the straight line q = 1 - v, which leads to the condition 

l - V > 17 _ma__...:. > a/L- ~ (3.8) 
A 

Taking into account the notation in (3.6) we conclude that when mal < A the left-hand side of inequality 
(3.8) is always satisfied if condition (3.7) is satisfied; the right-hand side leads to a lower limit of the 
vibration frequency [10] 

1 ~2(4Amgl C2co 2) (3.9) p >  
2real 

where, by assumption, the expression under the square root sign must be assumed to be positive. In 
this case, rotation of the body plays a useful role since, as co increases, the value of the angular frequency 
of vibration required to stabilize the motion decreases. 

Some special cases can be derived from (3.9). For example, if the gyroscope is not, in general, rotated, 
which corresponds to co = 0, then assumingA = m p  2, where p is the equatorial radius of inertia of the 
body, we arrive at a condition which is identical with the well-known condition for the stability of the 
vertical position of a physical pendulum, set up on a base which is subject to vertical vibrations [15] 

ap  > 2~p211 

If we put p = l here, we obtain the Bogolyubov-Kapitsa condition for the case of a mathematical 
pendulum [16]. 

4. T H E  T R A N S F O R M E D  E Q U A T I O N S  O F  A P O I N T  M A S S  I N  A 
U N I F O R M L Y  ROTATING SYSTEM OF C O O R D I N A T E S  

We will assume that a point mass m undergoes motion relative to a system of coordinates OXlX:3, 
rotating with constant angular velocity co with origin at an arbitrary point in space, due to the action 
of a specified force F = F(t). The equations of relative motion of the point mass in projections onto 
the axis of a moving trihedron Oxlx:3 have the form 

mYq - OTo/OX I - 2mco3.~ 2 + 2mco2.~ 3 = E l (1 2 3) (4.1) 

TO -- I/2 m{(CO2X3 _ CO3x 2 )2 + (CO3Xl _ COlX 3 )2 + (COla2 _ CO2X I )2 } 

Fig. 1. 
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where F1, F2 and F3 are the projections of the specified force onto the axes; the derivatives OTo/aXj are 
the projections of the centrifugal force, developed due to the rotation of the trihedron Oxxxzx 3 onto 
the corresponding axes. 

Equations in the form (4.1) turn out to be inconvenient for constructing exact solutions. Hence, when 
considering different kinds of problems, described by system (4.1) (for example, the motion of a heavy 
point in the regions of the Earth's surface taking its rotation into account), the method of iterations is 
preferable to direct integration of the system. The method described in Section 2 enables us, by changing 
Eqs (4.1), to simplify their investigation considerably. 

Comparing system (4.1) with Eq. (1.2), we put 

iJ ° H = 2m co3 0 -col (4.2) 

II-co2 c°l 

From Eq. (2.3), by means of which the gyroscopic terms in matrix equation (1.2) are eliminated, we 
obtain, taking (4.2) into account, three groups of similar equations defining the elements of the 
orthogonal matrix L = II ljk I1~ for the specified problem 

]11 =CO3112--CO2/13, i12----'--CO3/i1+COl/13, ii3=CO2111--COlII2 (1 2 3) 

Hence we have a single characteristic equation for these groups 

~.(~,2 +(02)=0, co =4co~ +(°22 +(°32 (4.3) 

Equation (4.3) has a simple zero root ~,1 = 0 and two pure imaginary roots 7%. 3 -- - ico. By satisfying 
the identity matrix of the initial conditions we obtain 

rl -2 K 1 n $1 /112 -- m3 hi3 + 
L = ~ -  12+m 3 s 2 n~_ml  

unl3 - m 2 n23 + m I s 3 
(4.4) 

Here, for brevity, we have put 

- COj Sj - 2 + ((02 - CO~ ) COS COt, mj = COOj sin cot, nj, ---- COjcok (1 -- cos COt), j --- 1-~ 

We further have 

(4.5) 

°,°2 o ,o ,  II 
n -- m (02(01 _(co2 + (02) (02(03 "11 (4.6) 

co3col (03(02 _((.02 + (02)R 

Equation (2.4), apart from the non-linear vector on the right-hand side, can be represented in the 
form 

m~ + (Lrl - mL)Lr~ = LF, ~ --- [~l, ~2' ~3 ]T  F = [FI, F2, F 3 ]7" (4.7) 

By operating with matrices (4.4) and (4.6) it can be shown that the expression in parentheses in Eq. 
(4.7) vanishes, as a result of which this equation takes the simple form 

rn~ = L F (4.8) 

corresponding to three scalar equations, that are modified compared with system (4.1). Since the acting 
force, and also the angular velocity of the trihedron Oxlxzx3, are assumed to be specified, the exact 
solution of matrix equation (4.8) is given by the binary quadrature 

= ~(0)+ ~(0), + 1 i i LFdt2 (4.9) 
m o o  
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where 9(0) and ~(0) are the values of the vectors ~ and ~ at the initial instant. Reverting to the initial 
matrix variable we have, by virtue of (2.1) 

x m L-I~ m LT~ 

For illustration we will consider a special case of Eqs (4.1) relating to the motion of a heavy point in the 
neighbourhood of the Earth, taking its rotation into account [18]. As it applies to this case, the origin of the trihedron 
Oxtx~3 is chosen to be at a certain arbitrary point in the region of the Earth's surface, which approximates the 
figure of the Earth by a sphere. We direct the OXl axis in the meridian plane towards the north, the Ox2 towards 
the east, and the Ox 3 axis along the geocentric vertical to the centre of the Earth's sphere. We will assume 

tol =c0cos(p, to 2 =0,  0) 3 =-tosinq) 

where to is the angular velocity of rotation of the Earth and tp is the geocentric latitude. Further, we must carry 
out other quadratures indicated in (4.9), assuming F = (0, 0, mg), where g is the gravitational acceleration, and 
then revert to the initial variable. 

For simplicity we will assume that when t = 0 

xl = x2 = x3 = 0 ,  .iq =.~2 = ~3 = 0  (4.10) 

This corresponds to the heavy point being situated at the origin of the trihedron Oxlxzx3. According to 
representation (2.1) the same initial conditions also correspond to the components of  the vector ~. Further we 
must carry out simple calculations, guided by expression (4.9) and taking the initial conditions (4.10) into account. 
As a result we obtain the exact formulae 

- f to2t2 
x I = ~. ~(l-costot)costot+(tot-sintot)sintot- sin2(p 

2to" [ 2 f 
x 2 = -~-f (sin tot - tot cos tot)cosqu 

_ f to2t2 "1 
x3 = J-~-l (costot-  1 + tot sintot)cos2 9 + - T - s i n 2  9 t  

(4.11) 

in which we must, of course, assume to ~ 0. 
Assuming small values of tot (to ~- 7.29 x 105 s -1) we can obtain the well-known approximate expressions forxl,  

x2 andx3 from formulae (4.11). 
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